
SEV1 - The Art of Incident

Command

A Modern SRE-Aligned Approach to Incident

Management

By Frank Jantunen

Why This Book?

Most books on incident response are locked behind paywalls or written like

policy manuals. This isn’t that.

This is a tactical field guide for the people actually on-call—the ones who get

paged at 3AM and have to lead through the fog of war.

If you’ve ever had to coordinate across Slack threads while pulling logs and

writing updates to leadership—this is for you. If you’re the only SRE at your org,

or part of a centralized team trying to shift culture from the edges, this is

especially for you.

The Mission

This book exists to align modern incident response with SRE culture: fast,

humane, and relentlessly practical.

It’s about using incidents as catalysts—not just to fix systems, but to transform

how organizations think and operate. It’s a survival manual for the mess and

an argument that culture—not just tooling—is what defines reliability.

Incidents drive change. Never let a crisis go to waste.

How to Use It

The structure is dead simple: before, during, and after the incident. You can

jump to any section as needed.

The language is intentionally spartan. No fluff, no filler. Just clear ideas and

hard-won practices tested under pressure.

It’s built to match human limitations—especially under cognitive load.

Incidents happen when you’re tired.

Working memory is limited.

Stress narrows focus and kills retention.

That’s why the guidance here is short, structured, and designed to be scanned—

not read front to back like a novel. It’s optimized for clarity during degraded

cognition, not academic perfection.

🧠 In incident response, the enemy isn’t just downtime—it’s overload. This

book is built for peak usability during peak stress.

Why Emojis, Callouts, and Formatting Matter

You’re going to see a lot of visual cues in this book: emojis, callout boxes, tight

bullets, and bolded takeaways. That’s not for style points. That’s for

scannability under stress.

This is written for on-call humans—people skimming this at 3AM, half-asleep,

with alerts firing and Slack melting down. The goal isn’t clever formatting. The

goal is to make signal pop.

Emojis 🧠📉🚨

Used sparingly, they act like visual road signs. They help anchor ideas and

break up cognitive load—especially in runbooks, alert payloads, and checklists.

If it helps you spot the 🛑 STOP or ✅ DONE faster, it’s doing its job.

Callouts & Takeaways 📦

These isolate what actually matters. They’re the stuff people highlight in

trainings—or forget when it counts. Use them to orient, not decorate.

Spartan Layout, Fast Reading 🏃‍♂️

Short paragraphs. Minimal prose. If it takes more than five seconds to

understand, it’s probably rewritten. This isn’t about dumbing things down. It’s

about reducing friction.

🧠 This book isn’t a blog. It’s a cockpit manual. And every second counts.

Value-for-Value

This book is free to read, remix, and share. If it helps you or your team, consider

sending value back—feedback, stories, signal boosts, or donations.

There’s no DRM. No paywall. Just trust.

If it helps you, pass it on.

Copyright Page

Copyright © 2025 Frank Jantunen All rights reserved.

This work is distributed under a value-for-value model. It may be freely read,

shared, and discussed for personal, non-commercial use. If you found it

valuable, consider supporting the project, offering feedback or sharing it. 🙏

No paywall. No ads. Just value-for-value.

Support the project:

⚡ Bitcoin: bc1qxl8uy3acrhlhgvn7653twmdmhr97j0xjxk2cak

💸 PayPal: https://paypal.me/frankjantunen

For commercial use—including redistribution, employee training, or internal

documentation—please contact the author directly at frank@sev1.org.

No part of this publication may be reproduced, stored in a retrieval system, or

transmitted by any means—electronic, mechanical, photocopying, recording, or

otherwise—for commercial use without prior written permission from the

author.

Printed in USA 🇺🇸 First Edition – June 2025

Legal Disclaimer ⚖️

This book is intended for informational and educational purposes only. The

views expressed are those of the author and do not represent the positions of

any employer, organization, or entity unless explicitly stated.

All trademarks, logos, and brand names mentioned are the property of their

respective owners. Their use is for identification and illustrative purposes only

and does not imply affiliation, sponsorship, or endorsement.

Mentions of specific services, platforms, or vendors—including but not limited

to PagerDuty, Datadog, Honeycomb, Gremlin, Netflix, Google, PayPal, and

Microsoft—are made for example and context. No payments, sponsorships, or

kickbacks were received. This book promotes no specific tool or service. All

references are used in a neutral, educational context.

The content is provided “as-is.” Readers assume full responsibility for the use of

any information presented herein. Always evaluate ideas in the context of your

organization’s specific needs and risks.

Table of Contents 📜

Acknowledgements

Foreword

Part I: Before the Incident 🕰️

1. What Is an Incident, Really? 🤔

2. Operational Mindset & Culture 🧠

3. Clear Criteria for Incident Declaration ✅

4. Systems, Playbooks & Observability 🗺️

5. Alerting Without the Noise 🔕

6. Training, Simulation & Team Maturity 🏋️‍♀️

Part II: During the Incident 🔥

7. Triggers & Assembly 🚦

8. Incident Command in Practice 🧑‍✈️

9. Communication Under Pressure 🗣️

10. Managing People, Pace & Burnout 🧘

Part III: After the Incident 📝

11. Declaring the End & Recovery 🏁

12. Postmortems That Don’t Suck ✨

13. From Lessons to Systems Change 🔄

14. Measuring What Matters 📊

15. The Future State of Incident Command 🔮

Conclusion

The Journey Continues: Further Learning and Resources 🚀

Acknowledgements 🙏

To my family, who never asked why I was obsessed with writing this book—just

made sure I didn’t forget to eat. Thank you for the support! ❤️

To Eric, who’s been a great mentor and a constant source of inspiration.

To everyone I’ve worked with over the years. 🤝

To the Learning From Incidents community, and to those who’ve pushed

reliability thinking beyond dashboards and into the human domain—your work

paved the way for this one.

Thank you to everyone who’s ever written a clear postmortem, spoken up when

something felt off, or challenged process for the sake of people. You’ve made

this field more humane, and this book wouldn’t exist without your example.

And to anyone who reads this and offers value for value—thank you. That

exchange means more than you know. ✨

Foreword

When I got into tech in June 2000—slapping together fugly websites, streaming

low-res videos, and trying to keep NT4 servers running—before YouTube was

even a concept, I was live streaming, running end-to-end event production and

becoming the SME for anything streaming or CDN. 👨‍💻

By 2011, I’d stumbled into incident management. The industry was deep in its

ITIL hangover—rigid process, thick hierarchies, and enough red tape to

mummify a data center. 📜 It brought order, sure, but agility? Like trying to steer

a cargo ship with a joystick. 🚢

Then came the SRE wave. 🌊 Suddenly everyone wanted to “do SRE,” flipping

the script on how we think about reliability and response. But despite all the

tooling, the frameworks, the culture decks—we’re still flailing when it comes to

human factors.

I’ve ridden every wave since—sometimes surfing 🏄‍♂️, sometimes just staying

afloat. In 2018, working at a startup, I got my first exposure into the role of

incident commander. No training, no playbook, barely any system visibility.

Just raw chaos, flaming chainsaws 🔥🪚, and the expectation to “own it.” That

trial by fire taught me this: strong incident command is non-negotiable,

especially when you’re also wearing three other hats. 🎩🎩🎩

Across startups and giants, I’ve watched teams fumble and stall—not because

they lacked tools, but because they ignored culture. Fixing incident

management means wrestling that beast. And let’s not kid ourselves—it’s like

sprinting uphill through molasses.

SEV1 – The Art of Incident Command is the distilled chaos. Not sanitized “best

practices,” but the book I wish someone had handed me when I was drowning.

It’s built from scars, scraped from real-world incidents, and shaped by teams

both scrappy and sprawling.

Today, incident response is a three-ring circus: engineers juggling pagers 📟,

debugging blind 🕶️, and improvising in real time while the stakes climb and

the tooling sprawls. This book is your survival guide and your last line of

defense.

🌊 The water’s rough. Are you ready to jump in?

—Frank Jantunen

PART I: Before the Incident 🕰️

1. What Is an Incident, Really? 🤔

The ITIL View: A Starting Point

The ITIL (Information Technology Infrastructure Library) framework provides a

classic definition of an incident:

“An unplanned interruption to an IT service or reduction in the quality of

an IT service.”

This approach is service-focused, reactive, and operational by nature—an

incident exists when someone or something detects a problem.

Where ITIL Falls Short: The Priority Matrix Trap 😬

In modern, complex systems, the traditional ITIL model’s handling of urgency

and impact is a critical bottleneck. The model separates priority from severity,

calculating priority based on a function of its two main inputs:

Priority = Impact x Urgency

⏳ Debating whether an incident is a P2 or P3 wastes time not spent

mitigating escalating customer impact.

The SRE Mindset: Engineering for Failure 💡

Site Reliability Engineering (SRE) collapses the distinction between priority and

severity to move faster and assumes system failures are inevitable.

Key shifts:

Incidents are learning signals 🎓, not just problems to fix.

Teams can declare incidents based on suspicion, not proof.

Early detection creates valuable time to prevent or reduce customer

impact.

Where an Incident Begins

A modern guideline:

An incident begins when a responder believes action may be needed to

preserve service reliability.

One person is all it takes to declare: “Something may be wrong. We should

respond as if it is until we confirm otherwise.”

Example triggers:

Threshold alerts (metrics exceed limits) 📈

Composite alerts (multiple signals) ➕

Log-based alerts (error patterns) 📄

Failed synthetic checks 🤖

Breached SLOs 💔

Human reports 🙋‍♀️

External indicators (status pages, social media) 🐦

Example Severity Matrix (Impact-Focused) 🚀

SEVERITY IMPACT

TYPICAL

RESPONSE

TIME

EXAMPLES & NOTES

SEV-0

(optional)

Severe platform

failure, business risk
Immediate

Catastrophic event,

exec-level

coordination, unknown

recovery path

SEV-1

Major service

degradation or

outage

< 3 min

Core features down,

large-scale impact, “all-

hands” response

SEV-2
Moderate service

impact
< 5 min

Significant

performance issues,

workaround may exist,

multiple services

affected

SEV-3
Degraded user

experience
< 15 min

Minor bug, single-

service impact, logged

for resolution

SEVERITY IMPACT

TYPICAL

RESPONSE

TIME

EXAMPLES & NOTES

SEV-4

(optional)

Minimal/cosmetic

impact
< 48 hours

Flexible, for deferred

issues

SEV-5

(optional)

External/Partner

issues
Monitor Only

Third-party outage,

visible but not

actionable

📊 Reality Check: Most teams operate with just SEV-1 to SEV-3. Start

simple, expand only if needed.

🔄 Sidebar: Severity vs. Priority

📌 This matrix maps severity as a measure of impact—not priority.

Severity = how bad.

Priority = how fast.

A SEV-3 might trigger a P1 if it risks legal exposure. A SEV-2 might be

stable and non-urgent.

🔔 Let the alert decide—use worst-case interpretation at time of fire.

Severity should reflect what could go wrong if nothing is done. Escalate

early; downgrade with certainty.

Treat severity as an engineering signal. Treat priority as a business

response. Most orgs route by SEV; stakeholders triage by P#. If you deal

with contracts, SLAs, or compliance—track both.

Lifecycle Comparison

FRAMEWORK LIFECYCLE STEPS
PRIMARY

CONTEXT

ITIL

Detection → Logging → Categorization →

Prioritization → Diagnosis → Resolution

→ Closure

Operational

helpdesk 📞

SRE
Detect → Triage → Mitigate → Resolve →

Review

Fast-moving,

distributed

systems 💨

NIST

Preparation → Detection & Analysis →

Containment, Eradication & Recovery →

Post-Incident Activity

Security-focused

response 🛡️

🔑 Key Takeaway: Keep it simple: map severity to priority directly and

define levels by the response they demand.

2. Operational Mindset & Culture 🧠

Incidents do not happen in a vacuum. Team response, escalation, and recovery

are shaped by culture—how a team thinks, behaves, and values its work.

Resilience Over Redundancy

Redundancy can mask fragility. Instead of fixing flaky systems, teams add

layers.

Resilience means being honest about what breaks, why, and what to do when it

breaks again.

It’s about graceful degradation, fast recovery, and human readiness.

Resilient teams:

Stay calm under pressure 😌

Shift strategies when needed 🔄

Fix contributing factors, avoid tunnel vision 🎯

Resilient systems:

Use circuit breakers 🛑

Deploy feature flags 🚩

Rely on multi-region failover 🌍

Implement load shedding ⚖️

Add synthetic checks 🧪

Blamelessness and Psychological Safety ❤️

If engineers are afraid to speak up, incident response is compromised.

Blame kills curiosity. 🔪

Blameless culture separates the person from the process, focusing on why a

decision made sense at the time.

Psychological safety means:

People can admit uncertainty 🤔

Call out confusion without fear 🗣️

Escalate when things felt wrong 🚨

SRE vs. DevOps Culture: Bridging the Mindsets

SRES DEVOPS

Emphasize error budgets, reliability as

feature
Fast, iterative, delivery-focused

Treat ops as software problem Willing to trade stability for speed

Quantify risk, push back on

unsustainable pace

Adaptable, but risk burnout or

inconsistent quality

Bridge-building strategies:

Shared retrospectives 🤝

Cross-functional drills 🏋️

Role flipping 🔄

Translation layer 🗣️

Tooling Signals Culture

Your incident management tooling—Slack vs. Teams, PagerDuty vs.

homegrown schedulers, orchestrators like Rootly, FireHydrant, Blameless or

incident.io, and even how you structure observability—says a lot about your

engineering culture. These choices shape more than your incident response;

they signal what kind of environment you’re building and who it’s built for.

Some tools come with historical baggage. Others imply a more modern,

progressive approach. Slack implies high-context, fast-moving collaboration.

Teams might signal heavier governance. PagerDuty suggests urgency and

maturity. Blameless implies structured learning and psychological safety.

Homegrown tooling could imply a startup culture, which you may have to

maintain.

These are cultural decisions disguised as tooling choices. Your stack becomes

your story. Choose with intention—because it attracts (or repels) the kind of

engineers you’ll end up relying on in a SEV1.

🏗️ Building Resilient Systems: Two Pillars

System-Level Resilience

🔄 Circuit breakers & retries

⚖️ Load balancing & failover

📈 Monitoring, logging, tracing

🚨 Structured on-call process

🔥 Regular fire drills

🛠️ Reliable incident tooling

Adaptive Capacity (Resilience Engineering)

🔬 Study work-as-actually-done

📚 Learn from successes & near-misses

🛡️ Foster psychological safety

📡 Develop weak signal sensing

🧪 Support experimentation

🔑 Key Takeaway: Culture isn’t a slide deck or a slogan. It’s what people

actually do—under pressure, in the dark, without a script. If you want real

resilience, you need both: systems built to absorb shocks, and teams

trained to adapt.

3. Clear Criteria for Incident Declaration ✅

If you ask five teams what counts as an incident, you’ll likely get ten different

answers. Incident management cannot start effectively until everyone knows

what qualifies as an incident, who can declare one, and what should happen

next.

ITIL vs. SRE: Definitions

CONCEPT ITIL SRE

Severity
Not formal. Often muddled

with “impact.”

Clear measure of technical impact

(e.g. downtime).

Priority
Blend of impact and urgency

for ticket SLAs

Rarely used. Urgency implied by

severity.

Common Failure Modes 💥

Scenario: A production database flips into read-only mode.

SRE-style:

Severity: SEV-1 (all users affected, revenue at risk)

Action: Immediate mobilization, IC assigned

ITIL-style:

Impact: High

Urgency: Medium (off-hours)

Priority: P2 (lower urgency, sits in queue)

The Fix:

Severity = How bad is it? (drives engineering response)

Priority = How fast do stakeholders need action? (drives comms)

Incident Declaration Criteria

A healthy incident process starts with specific, trigger-based criteria:

SLO/SLA violations or high error rates 📉

System unavailability or major latency issues 🐌

Security breach or suspicious activity 🛡️

Business-critical functionality degraded 💸

Anything with unknown impact that could worsen rapidly ❓

📢 Important: “Incident” doesn’t mean “disaster.” It means structured

response.

The Security Dimension 🔒

Some incidents are the direct result of malicious activity (e.g., DDoS attack). SRE

and Security must collaborate:

Unified Declaration, Parallel Tracks: Declare incident by impact, not cause.

Engage Security immediately if suspected.

Joint Playbooks: Pre-defined roles for common scenarios.

Bridge Communication Gaps: IC ensures both teams are in the same

command channel.

Practice Secure Evidence Handling: Controlled, auditable access; follow

retention policies.

Who Can Declare?

Anyone in the organization should be empowered to declare an incident. If it

turns out to be a false alarm, that’s acceptable—over-alerting is better than

delay.

Example Incident Assembly Orchestration:

Slack command via tooling (e.g., /incident sev1)

Auto-generated incident channel and notebook

Assign temporary IC, prompt for severity

Transparency and Announcement 📢

Incidents should be visible. Unless security-sensitive, post in a public

#incidents channel with an auto-generated summary.

Example:

JIRA# INC-1234

SEV2 - Checkout - API - High error rate on checkout API

Slack Channel: #INC-1234

🔑 Key Takeaway: Define clear criteria for declaring incidents, this

removes hesitation. When anyone can declare an incident quickly and

transparently, teams respond faster and learn more effectively.

4. Systems, Playbooks & Observability 🗺️

Incidents aren’t just about people responding—they’re about systems telling us

something is wrong and giving enough information to act.

MELT: Metrics, Events, Logs, Traces

PILLAR PURPOSE EXAMPLE

Metrics Trends, thresholds CPU usage, error rates 📈

Events Discrete signals Deploy, config change ⚙️

Logs Granular detail, forensics Error logs, audit trails 📜

Traces Connect dots across services Request tracing ➡️

💡 Tip: Mature systems integrate all four, but balance coverage with cost.

💰

The Service Catalog: Your Operational Map

A robust service catalog is indispensable:

Clarity of Impact: Know which business services are affected

Accelerated Triage: Identify service owners and SMEs

Dependency Mapping: Predict cascading failures

Contextualized Observability: Bridge between metrics and business

services

Structured Playbooks: Organize docs by service

What a Service Good Catalog Contains:

Service name & description

Owner(s) & on-call info 📞

Tier/criticality

Dependencies

Links to dashboards, runbooks, repos 🔗

Runbooks, Dashboards, Dashbooks

Runbooks: Step-by-step guides (“If X breaks, try Y”) 📖

Dashboards: Visual snapshots (“Is everything green?”) 📊

Dashbooks: Decision trees embedded into dashboards 📎

✅ Checklists: Always clearly structure docs as checklists to reduce errors

and ensure critical steps aren’t missed.

Ultra-Terse Runbooks & Visual Cues ✂️👀

Runbooks are most useful when they’re scannable under stress. In high-tempo

incidents, no one wants a wall of text. What I’ve found most effective is writing

runbooks in ultra-terse, command-style language. Think: checklist, not essay.

Add visual cues—like emojis or icons—to guide the eye to high-priority actions

(🛑 STOP , 🧪 VERIFY , ✅ DONE). These cues reduce mental overhead,

especially when runbooks are embedded directly into alert payloads or chat

workflows. The goal is clarity and speed, not cuteness.

💡 Tip: If your runbook isn’t readable in five seconds during a fire, it’s too

long.

Auto-remediation: Guardrails & Pitfalls 🤖

Automation can act faster than humans, but speed without context is

dangerous.

Add rate limits and circuit breakers

Log and alert on automated actions

Always leave a manual override

Consider cost implications

Platform Engineering Connection 🏗️

Modern platform teams embed observability, runbooks, and automation into

the dev workflow, making reliability everyone’s responsibility.

🔑 Key Takeaway: Modern incident readiness requires integrated systems,

current docs, practiced chaos, thoughtful automation, and platform-

embedded reliability practices.

5. Alerting Without the Noise 🔕

The best alert is the one that matters. The rest are distractions—expensive ones.

SLO-Based Alerting and Signal Quality 📈

SLOs are contracts between system reliability and user expectations. Good

alerts are rooted in those contracts.

🚨 Alert outside the error budget = important

👍 Inside budget = not urgent

Want quick triage? Link each alert type to its impact criteria and example

dashboards. Even better, use AI-generated summaries (reviewed by humans) to

surface what matters—so you’re not chasing 99 dashboards to find one root

cause.

Routing, Deduping & Silencing the Noise ➡️⛈️🤫

These are the hygiene layers of alerting.

➡️ Routing: Send alerts to the right team with actionable context

Route to team-specific, environment-aware channels like #api-

prod , #api-staging , or #api-dev

Avoid dumping all alerts into #ops or #oncall-firehose

⛈️ Deduplication: Kill the clones. One problem = one signal

🤫 Suppression: Silence known noise so real issues aren’t buried

All of this should link directly to filtered dashboards, current runbooks, and

team docs. No more hunting.

Alert Fatigue, False Positives, and Pager Hell 📟🔥

Bad alerts create distrust. False positives drain focus. Pager hell burns people

out.

Track key alert health metrics:

📊 Alert-to-action ratio

🕐 Mean Time to Acknowledge (MTTA)

📈 Alert frequency by severity and time of day

Make these visible. Better yet, include them in each service’s landing page so

responders see the context in real-time.

AI/ML for Detection: Promise vs. Reality 🤖🧃

AI can find weird patterns—but unfiltered, it just adds to the noise.

Use ML to surface anomalies, not to make decisions

Pair with human judgment and clear runbooks

🤖 Reality Check: If AI fires an alert, humans still own the action. Treat it

as a suggestion, not a verdict.

Tuning Alerts: From Wall of Noise to Layered Intelligence 🎛️🧠

Avoid alert overload by designing a three-tiered model:

🔁 Three-Tiered Alert Strategy:

1. 📟 Page Alerts (High Fidelity):

🚨 User impact is likely or confirmed

🤖 No auto-remediation

🕐 Needs immediate response

2. 📮 Ticket Alerts (Medium Fidelity):

📌 Worth tracking (e.g., disk 80%, 5xx spikes)

🎫 Routed into backlog

3. 📊 Dashboard/FYI Alerts (Low Fidelity):

🧾 Informational

🛑 Suppress during incidents

💡 Every alert should answer: “What action do I expect someone to take?”

You should be able to sort every alert into one of these buckets—if not, it

probably doesn’t belong.

Living Documentation Inside the Alert Payload 📎📦

A strong alert payload is a mini-playbook.

📦 Include in every payload:

🔗 Link to the relevant runbook

📊 Dashboard preview to verify the issue

🧪 Diagnosis checklist to follow

🎯 Next steps, depending on what’s true

👤 Owning team contact or Slack channel (e.g., #api-prod)

💬 Bonus: Use Slack bots to auto-expand this context when the alert fires.

🛠️ Tip: If your payload doesn’t help someone triage in 60 seconds, it’s not

done.

Alert Ownership and Hygiene 🧼🧑‍🔧

Don’t let ancient alerts linger. Maintain alert quality like you maintain code.

🧽 Alert Hygiene Checklist:

🔍 Reviewed via PR with peer sign-off

🧑‍💼 Has a clear team owner

🗓️ Set to expire or be reviewed quarterly

🚫 Teams have a noise quota—exceed it, review it

✂️ If nobody would miss the alert, delete it.

Fire Drill Your Alerts 🔥📣

Test alerts in controlled environments. See if humans can actually respond to

them.

🧪 Simulation Steps:

Fire a synthetic alert in the incident channel

Observe:

Was it noticed? 👀

Was the payload useful? 📦

Did the responder know what to do? ✅

❌ Did it trigger the wrong team?

Use environment-specific channels for drills too—don’t test everything in

#general .

If it can’t survive a drill, it won’t survive a real SEV.

Alert Response Plans: Terse Runbooks 🛬📚

When alerts come in from all sides, responders shouldn’t have to assemble their

own context puzzle.

Create Alert Response Plans: simple, example docs per alert type (e.g., high

latency, full disk, SLO breach).

Each ARP includes:

📘 Past false positives and known issues

🔗 Linked dashboards, screenshots, and metrics

🟢 Examples of steady state and historic incidents

🧠 SME contacts with Slack groups (e.g., @api-team , @dba-team)

🧭 “What to check first” section

This becomes the first link shared in triage. Build it once, iterate, reuse it every

time.

Minimize Clicks: Make It Instant, Not a Scavenger Hunt 🖱️❌

When you’re on-call at 4AM, every click is a tax on cognition. Responder UX

matters.

Design alerts so responders don’t have to dig.

🏎️ Low-Click Design Principles:

📦 Inline payloads: Include the runbook snippet directly in the alert—not

just a link

📊 Auto-expanded dashboards: Show key graphs inside Slack or

PagerDuty, not behind 3 hops

📎 Clickable buttons: Provide “Run diagnostic,” “Acknowledge,” or

“Escalate” buttons right in the alert

💬 Slack threads: Auto-start a response thread for each alert—no need to

create context manually

⏱️ Next-action shortcut: e.g., /runbook step1 or “Confirm fix applied?”

button

🧠 Think like UX for responders:

When the alert hits, they should immediately see what broke, how bad,

what to check, and what to do.

Visual Cues & Mental Anchors 🎯👁️‍🗨️

Design alert payloads for skimmability. Use emoji and formatting to direct the

eye.

✅ Good format:

🚨 SEV-1: Checkout Errors

🔍 Error Rate: 42% (normal <1%)

📉 SLO Burn: 7% in last hour

🔗 [Dashboard] | [Runbook Step 1] | [Escalate to on-call]

📎 Context: New deploy @12:32, API latency spiked

🎯 Next Step: Rollback deploy via /rollback checkout-api

💡 Design your alert like a status page update for engineers—tight,

scannable, decisive.

The “First 5 Seconds” Rule ⏱️👀

A responder should be able to answer these five within seconds of seeing the

alert:

1. ❓ What broke?

2. 🧠 What’s the impact?

3. 📊 Where can I verify it?

4. 🛠️ What should I try first?

5. 🧑‍💻 Who do I call if I’m stuck?

If your alert doesn’t answer those, fix the payload—not the human.

🔑 Key Takeaway:

🔕 Alerting isn’t about flooding inboxes—it’s about earning the right to

interrupt someone.

🧩 Design your alerts like products: layered, human-aware, context-rich.

✅ Quiet alerts = faster humans = faster resolution.

6. Training, Simulation & Team Maturity 🏋️‍♀️

Chaos Engineering as Ongoing Readiness

Practice, don’t just plan.

Chaos engineering deliberately introduces failure to test resilience.

Start small: Kill a single service instance 💥

Build confidence: Surface hidden dependencies, build response skills 💪

Practical Chaos Engineering: Building Muscle

Start with safe, controlled experiments in staging/dev environments.

Example: Simulating API Node Failure

Hypothesis: If a single API node fails, service remains available.

Roles:

Breakers (introduce failure) 😈

Fixers (respond, invoke process) 😇

Execution: Shut down node, track metrics, record detection/mitigation

times.

Blameless Retrospective:

Did service degrade or remain stable?

Were alerts timely?

Did runbooks help?

What blind spots emerged?

Action Items:

Improve dashboards and alert tuning

Refine runbooks

Assign ownership for follow-up

Prioritize resilience in sprints

Chaos Maturity Levels:

LEVEL DESCRIPTION

Level 1 Reactive: Terminate instances, kill processes

Level 2 Proactive: Schedule experiments

Level 3 Integrated: Chaos in CI/CD, automate faults

Level 4 Adaptive: System adjusts based on live feedback

🔑 Key Takeaway: You can’t control when the next incident hits—but you

can train your team to meet it with confidence. Chaos engineering and

simulation aren’t optional; they’re how you transform individual skill into

organizational readiness.

PART II: During the Incident 🔥

7. Triggers & Assembly 🚦

Every alert begins with a signal. The difference between chaos and

coordination starts at that moment.

Who Triages the Alert

Centralized Dispatch: Dedicated on-call humans screen alerts 🧑‍✈️

Decentralized Ownership: Alerts route directly to owning team’s pager 📲

Hybrid Models: Critical alerts to central group; others to teams 🤝

Alert Payload: From Noise to Signal

The best alerts are:

Immediately understandable

Clearly routed

Actionable or escalated within 30 seconds ⏱️

Checklist Example: ✅

Alert: High CPU on API Server

Checklist:

Check CPU metrics (dashboard link)

Check recent deployments (event log)

Check for runaway processes

Scale up server

If issue persists, escalate to on-call engineer

From Triage to Declaration

The transition between “alert received” and “incident declared” should be

explicit and documented.

Standardized Intake Questions: ❓

What’s the summary?

What’s the blast radius?

When did the issue start?

What changed recently?

Who else needs to know?

Compliance and Business Risk

Not every incident requires immediate action. Sometimes the business accepts

risk—document the risk, monitoring, and who made the call.

Access Controls and Break-Glass Scenarios 🚨

Role-based access escalation

Temporary credential rotation

Emergency access logging

Post-incident audits

🔑 Key Takeaway: The first few minutes are where clarity and chaos

compete. Triage is about signal discernment, role clarity, and high-quality

intake.

8. Incident Command in Practice 🧑‍✈️

The Incident Commander (IC) is the single person responsible for the overall

incident response. This is a temporary, highly focused role.

The Role of the Incident Commander

The IC is like the conductor of an orchestra—they don’t play every instrument,

but they ensure everyone is playing in harmony.

IC Responsibilities:

Command, Control, & Communication: Drive the overall response, not

perform specific technical fixes. 🗣️

Information Flow: Ensure information is shared effectively within the

response team and with stakeholders. 📡

Resource Management: Assign roles, bring in more responders as needed.

🧑‍🤝‍🧑

Decision Making: Make rapid, informed decisions under pressure. ⚖️

Documentation: Maintain a chronological log of events. ✍️

Wellness: Monitor team fatigue and ensure breaks. 🧘‍♀️

Handover: Clearly transfer command when shifts change. 🤝

🙅‍♀️ What an IC is NOT: The IC is not the person who fixes the problem. If the

incident commander is glued to dashboards, no one is steering the

response! They are the person who ensures the problem gets fixed. Delegate

the analysis. Coordinate the people. Stay above the weeds. Resist the urge

to dive into debugging!

Incident Roles and Responsibilities

Effective incident response relies on clear roles:

Incident Commander (IC): The strategic lead. 🧑‍✈️

Operations Lead (Optional): Directs technical investigation and mitigation.

🛠️

Communications Lead (Comms Lead): Manages internal and external

messaging. 🗣️

Scribe: Documents all actions and decisions in real-time. ✍️

Subject Matter Experts (SMEs): Engineers from affected teams who

diagnose and fix. 💻

Support Lead (Optional): Manages incoming customer support queries. 📞

Executive Sponsor (Optional): Provides high-level support, approves major

actions. 👑

❗ Important: In many organizations, one person may wear multiple hats

initially, but the mindset of these distinct roles is crucial.

Handling Swarming: Creating Focused Workstreams During Chaos

Large-scale incidents often attract a flood of well-meaning responders. Slack

fills with noise. The bridge becomes a spectator sport. People want to help—but

without structure, they end up repeating efforts, derailing focus, or just adding

background chaos.

The IC’s job isn’t to shut people out. It’s to create order from the influx. That

means giving the swarm something useful to do—and somewhere to do it.

Break Into Workstreams

Divide the incident into focused areas of investigation or remediation. These

typically follow existing team boundaries or runbook domains.

Examples:

Database Health (locks, replication lag, disk space)

API Failures (rate limits, 5xx spikes, error logs)

Frontend Impact (latency, broken UX, error surfaces)

Infrastructure (network partitions, cloud zones, DNS/CDN)

Rollback Options (risk assessment, build artifacts, toggles)

Customer Comms / Executive Liaison (status page, internal updates)

Each workstream should have:

One lead, responsible for updates and decisions

One channel or Slack thread for discussion

A goal (“Confirm DB replication is healthy”, “Identify safe rollback target”)

A doc or scratchpad to track progress

This keeps effort compartmentalized and allows the IC to move horizontally

without micromanaging.

Use a Shared Landing Page

Establish a central document to orient everyone. This is the front door for

anyone dropping into the incident.

Options include:

Datadog Notebook: best for observability-driven response

Google Doc: quick to set up, easy to update

Confluence Page: structured, versioned, good for longer-running events

The landing page should contain:

Summary of the incident (what’s known, what’s being worked on)

Current severity

IC and workstream leads

Links to active Slack threads

Timeline of major updates and decisions

Open questions and blockers

Drop this link early and often. Anyone asking “What’s going on?” gets pointed

here first.

Slack Discipline

Avoid the scroll-of-death. Centralize updates in a few clearly named threads:

🧵 network

🧵 statuspage

🧵 compute

Pin these in the incident channel or on the landing page. ICs should post

summary updates, not raw logs. Ask responders to reply in the relevant thread,

not the main channel.

Managing the Video Bridge

Video bridges are useful—but risky when unmanaged. Treat them like a war

room, not a water cooler.

Best practices:

Keep it to IC, workstream leads, and one comms person

Use the bridge for decision checkpoints, not passive chatter

(Optional) Stream it for observers, but don’t let everyone join live

Most tactical work still happens in Slack or docs. If your bridge feels like a

hangout, it’s time to trim the invite list.

Every responder wants to help. Make it easy for them to be useful without

becoming a distraction.

The Incident Lifecycle: From Active to Resolved

1. Detection & Declaration: Alert fires, IC declared. 🚦

2. Triage & Assessment: What’s the impact? What’s the severity? 🤔

3. Investigation: Deep dive into root cause. 🔬

4. Mitigation: Reduce or stop impact (e.g., rollback, disable feature). 🛡️

5. Resolution: Full fix applied, service restored. ✅

6. Recovery: Bring systems back to full health. 💚

7. Post-Incident Analysis: Learn from the incident. 📝

Decision-Making Under Pressure: OODA Loop

The OODA Loop (Observe, Orient, Decide, Act) is a powerful model for rapid

decision-making:

1. Observe: Gather information (metrics, logs, reports). 🧐

2. Orient: Analyze the situation, put it in context (mental models, past

incidents). 🧠

3. Decide: Choose a course of action (mitigate, investigate further). ✅

4. Act: Implement the decision. 🚀

Then, the loop repeats, constantly adapting to new information. This iterative

process is vital in chaotic environments.

🧭 Seek Clarity Early

Incidents begin in a fog.

📊 Dashboards light up.

🚨 Alerts fire.

💬 Slack explodes.

It’s easy to confuse motion with progress.

But flailing fast is still flailing.

The IC’s first job isn’t to fix—it’s to make sense.

🧭 Clarity Is the Compass

Not certainty. Not root cause.

Just a grounded view of:

✅ What’s actually happening

🚫 What isn’t

🧩 What needs attention

🔍 Start With the Basics

❓ What do we know

🤔 What’s a guess vs a fact

💥 What’s the impact

📈 Is anything improving

🗣️ Say it out loud.

👂 Ask others to explain their thinking.

If someone says, “It’s the database,”—ask:

Why?

What would prove that wrong?

Not to challenge—just to stabilize the narrative.

🧱 Use Structure

📝 Shared doc

📌 Pinned update

📋 List of knowns, unknowns, blockers

These small anchors ⛓️ reduce thrash and help the team move together.

Without shared clarity:

❌ Duplicate work creeps in

⚔️ Updates conflict

🐌 Progress stalls

🧠 Practice Epistemic Humility

Remember:

🔍 Dashboards are keyholes

🫥 Alerts are shadows

📉 Metrics simplify reality

The hardest part isn’t knowing what’s broken—it’s knowing what you can’t see.

Great responders ask:

🤷 What might I be missing?

🧠 What assumptions are baked in?

🔄 What else could explain this?

❌ What would prove me wrong?

They treat:

📝 Beliefs as drafts

🎯 Confidence as temporary

🔄 Clarity as something you build and re-check

🔑 Key Takeaway:

Strong incident command isn’t about heroics—it’s about structure, clear

roles, and iterative clarity.

In the fog, clarity > certainty.

But clarity without humility becomes overconfidence.

🧠 Question everything—especially yourself.

9. Communication Under Pressure 🗣️

During an incident, clear communication is paramount. Misinformation or lack

of information fuels panic and slows resolution.

Internal Communication: Keeping the Team Aligned

Dedicated Incident Channel: A central place (e.g., Slack, Teams) for all

incident-related communication. 💬

Regular Updates: IC or Comms Lead provides concise updates every 30

minutes (or as agreed).

Structured Updates (e.g., CAN):

🧭 The CAN Format: A Lightweight Comms Standard

C: Condition

What’s happening right now?

What systems or services are impacted?

When did it start?

A: Action

What’s been done?

What’s underway or queued?

What mitigation steps or playbooks have been attempted?

N: Need

What do we need?

Who should act, investigate, or approve?

What blockers exist?

Use this format in Slack threads, bridge updates, and stakeholder pings. It cuts

noise and ensures people hear what matters.

Example Update: C: Elevated 5xxs on checkout API, spike at 10:14 UTC A: Rolled

back 10:00 deploy, investigating DB connection pool N: Need SRE to confirm

read replica lag in #checkout-db

Want to scale this? Use a Slack /can shortcut to prompt structured updates or

train leads to anchor standups and bridges with it.

Decision Log: Key decisions and actions logged in real-time. ✍️

Avoid Chasing Shiny Objects: Focus communication on current

hypotheses and active workstreams. Archive dead ends.

🧠 Speak the Same Language: Standardized Terminology in High-

Pressure Environments

Communication during an incident hinges not just on speed, but clarity.

Terminology friction—when responders don’t speak the same operational

language—slows things down, increases error rates, and misroutes work. The

fix isn’t fancy tooling—it’s consistent language, used everywhere.

✂️ Terseness, Not Obscurity

Terse language is a feature, not a bug. But it becomes a liability when masked

behind team aliases, obscure acronyms, or insider references.

If someone says “get Bluebird on it” and half the team doesn’t know that’s the

Traffic SRE group, you’ve just added confusion. Similarly, acronyms like

“MARS” mean different things to different teams. Assume nothing. Spell it out.

🧩 Consistency Across the Stack

Standardized terminology should appear everywhere:

📚 Documentation

📇 Service catalogs

📈 Dashboards

🧾 Runbooks

💬 Slack channels

🎥 Video call agendas

Pick a canonical term—“Probes,” not “Canaries”—and use it across the board.

One word, one meaning.

🏗️ Build Language Into Culture

Clear, shared language reflects a strong ops culture. Encourage staff engineers

and ICs to model it. Bake it into code reviews, alert payloads, postmortems, and

onboarding.

You don’t need to sound clever. You need to be understood.

✅ The best responders sound boring. Clear, repeatable, boring language

wins.

Slack First, Zoom If You Must

When every second matters, Slack is your command center. Zoom is

supplementary.

Why Slack wins:

🧵 Organized, threaded updates

⏮️ Catch-up scroll for late joiners

🔍 Searchable for retros

🤖 Integrates with alerting and runbooks

🧑‍💻 Supports multiple simultaneous workstreams

Zoom? Great for:

High-bandwidth whiteboarding

Terse IC handovers

Briefings to non-technical stakeholders

But if a decision is made on Zoom, someone must write it into Slack.

📢 If it didn’t make it to the channel, it didn’t happen.

Communication Tools & Workflows

🤖 ChatOps Integration: Declare incidents, assign roles, send updates—all

from chat

🧑‍💻 Video Conferencing: For synchronous problem-solving, but keep it lean

🧾 Shared Docs: Google Docs, Datadog Notebooks, Confluence—use these

for central logging and coordination

📋 Comms Templates: Pre-approved messages for status pages, internal

updates, and exec briefings

External Communication: Managing Stakeholder

Expectations

Segment your audience:

🧑‍💼 Internal Stakeholders: Need impact, ETR, and recovery plans

🌐 Customers/Public: Want honesty, clarity, and regular updates

Pro Tips:

Set expectations for updates (“Next update in 15 minutes”)

Don’t wait for answers—say what you know and what you’re doing next

Coordinate closely with support, marketing, and comms

🔑 Key Takeaway:

Clarity under pressure isn’t optional—it’s the product of culture, structure,

and repetition. Use Slack as your cockpit, use language precisely, and give

everyone the same map. The only good chaos is the kind you’re driving.

10. Managing People, Pace & Burnout 🧘

Incidents are sprints, not marathons. Sustained high-pressure work leads to

burnout and errors.

Recognizing and Mitigating Fatigue

Mandatory Breaks: IC should enforce short breaks every few hours. Go for

a walk, grab water, stretch. 🚶‍♀️

Rotation: Ensure sufficient on-call rotation. No single person should be on-

call for excessively long periods. 🔄

Observing Body Language/Tone: IC should actively watch for signs of

stress, frustration, or exhaustion. 😠➡️😌

Avoiding Cognitive Overload

Focus on the Signal: Filter out irrelevant information. IC’s job is to create a

clear signal-to-noise ratio. 🔇

Delegate Ruthlessly: IC assigns specific, clear tasks, ask folks to report

back in channel async. Avoid vague “look into this.” ✅

Use Checklists/Runbooks: Reduce cognitive load by externalizing routine

steps. 📋

Limit Concurrent Tasks: Encourage responders to focus on one problem at

a time. Use prioritized checklists for multiple tasks, as needed. 🎯

Psychological Safety During the Incident

Encourage Speaking Up: Create an environment where it’s safe to say “I

don’t know,” “I need help,” or “I’m overwhelmed.” 🗣️

No Blame in the Moment: During the incident, focus solely on resolution.

Post-incident is for learning. 🛡️

Support for Mistakes: Acknowledge that mistakes happen, especially

under pressure. Focus on recovery and learning. 🤗

IC Self-Care & Handover

The IC role is incredibly demanding. Self-care is crucial.

Planned Handover: For longer incidents, have clear handover protocols

with a new IC taking over. This includes a full briefing. 🤝

Learn to Say No: The IC must protect the team from distractions and scope

creep during an active incident. 🙅‍♂️

Follow-the-Sun Coverage ☀️🌏

Global teams are a superpower—if you use them right.

Follow-the-sun coverage reduces fatigue and preserves decision quality by

shifting incidents to fresh responders in aligned time zones. Instead of waking

up heroes at 3AM, you rotate responsibility across regions as the sun moves.

It only works if:

There’s a clean handover protocol

Systems, docs, and dashboards are shared and mirrored

Teams trust each other to pick up mid-incident

This isn’t just operationally efficient—it’s biologically smart. Humans are not

24/7 systems. Sleep debt, disrupted circadian rhythms, and cognitive fatigue all

degrade incident response.

🧠 Human factors matter. Tired responders miss signals, miscommunicate,

and default to tunnel vision.

Wake-the-right-person beats wake-the-best-person. Optimizing for local time

zones isn’t about laziness—it’s about preserving clarity under pressure.

If your team spans multiple continents but you’re still running incidents out of

a single timezone, you’re paying for 24/7—but operating like 9-to-5.

🔑 Key Takeaway:

Follow-the-sun coverage isn’t just about scale—it’s about respecting the

limits of human cognition. Minimize task switching, protect sleep, and

align your processes to human performance windows.

PART III: After the Incident 📝

11. Declaring the End & Recovery 🏁

The incident isn’t truly over until services are fully restored, systems are stable,

and the learning process begins.

Criteria for Incident Resolution

Resolution is not just “it’s working now.” It requires:

Service Restoration: All affected services are back to operational status.

Including Root Cause service and all dependent services ✅

Impact Mitigated: Customer-facing impact has ceased. 🛑

Stabilization: System metrics are normal, no active alerts. 📈

No Known Residual Issues: No immediate follow-up actions required to

maintain stability. 🚫

The Role of the Incident Commander in Closure

The IC is responsible for officially declaring the end of the active incident. This

involves:

Final Verification: Confirming all resolution criteria are met with the Ops

Lead. 🧐

Final Communications: Announcing the resolution internally and

externally. 📢

Handing Off Follow-up: Ensuring that post-mortem actions are logged and

assigned. 📝

Team Stand-down: Thanking the team and formally dismissing

responders. 🙏

Recovery Steps & Checklist

Recovery means bringing systems back to their pre-incident state, and often

better.

Recovery Checklist:

Verify all affected services are fully operational. ✅

Confirm data consistency if any data loss or corruption occurred. 💾

Remove any temporary mitigations (e.g., disabled features, throttles). 🗑️

Restore monitoring and alerting to normal levels. 🔔

Clear any outstanding alerts or alarms. 🧹

Ensure all logs and forensic data are preserved for the post-mortem. 📂

Notify relevant teams and stakeholders of full recovery. 📣

Schedule the post-mortem meeting. 🗓️

The “All Clear” Signal 🚥

A clear, unambiguous “all clear” signal helps shift the team’s focus from crisis to

recovery and learning. This could be a message in the incident channel:

🔑 Key Takeaway: A clear and deliberate closure process ensures true

resolution, prevents “phantom incidents,” and smoothly transitions the

team to the critical learning phase.

12. Postmortems That Don’t Suck ✨

The post-mortem (or post-incident review) is the most critical learning

opportunity. A “good” post-mortem isn’t about assigning blame; it’s about

understanding and improving.

Blameless Postmortems: The Foundation of Learning ❤️

A blameless culture is non-negotiable for effective post-mortems.

Focus on Systems, Not People: Assume everyone acted with the best

intentions given the information they had. 🧠

“Five Whys” (and Beyond): Repeatedly ask “why” to uncover deeper

systemic issues, not just surface symptoms. ❓❓❓❓❓

Psychological Safety: Ensure participants feel safe to share their

perspectives, including mistakes or missed signals. 🗣️

Structure of a Modern Postmortem

A robust post-mortem document typically includes:

1. Summary: High-level overview of the incident, impact, and resolution.

2. Timeline: Detailed chronological log of events, including detection, actions

taken, and key decisions. ⏳

3. Impact: Comprehensive description of business and customer impact. 💸

4. Root Cause(s): The underlying systemic factors that led to the incident.

(Often multiple contributing factors). 🌳

5. Detection: How was the incident detected? Was it timely? 🚨

6. Mitigation: How was the impact reduced or stopped?

7. Resolution: How was the service fully restored?

8. Lessons Learned: What did we learn about our systems, processes, and

people? 🎓

9. Action Items: Concrete, measurable tasks assigned to specific owners with

due dates. These are the outputs of the post-mortem. ✅

10. Preventative Measures: What changes will prevent recurrence or reduce

future impact? 🛡️

Facilitating the Postmortem Meeting

Neutral Facilitator: Someone not directly involved in the incident, if

possible, to keep the discussion on track and blameless. 🧑‍⚖️

Preparation: Distribute the draft post-mortem document beforehand.

Time Management: Keep the meeting focused and within a set timebox. ⏱️

Focus on Discussion: Encourage open dialogue, not just reading the

document.

Action-Oriented: Ensure clear, assignable action items are generated.

🔑 Key Takeaway: A blameless postmortem is a gift to your organization. It

transforms errors into opportunities for systemic improvement, fostering a

culture of continuous learning and resilience.

Positive Retrospectives: When Nothing Broke (Because You Did It

Right) ✨

We usually wait for things to break before we learn from them. But some of the

best signals come from the near-misses—the moments where something could

have gone sideways but didn’t.

Maybe a deploy was flagged and rolled back before it hit prod. Maybe someone

spotted an odd metric pattern, kicked off an investigation, and quietly averted a

major issue. Maybe a fallback system kicked in perfectly and no one even

noticed there was a problem.

These are not accidents. These are successes. And they deserve just as much

attention as the big blowups.

We call these positive retrospectives.

A positive retrospective is a deliberate look back at a time when the system, the

team, or the process caught something early and acted before damage occurred.

It’s not about high-fives or chest-thumping. It’s about studying what worked, so

you can do it again.

What to explore in a positive retro:

What signals or behaviors helped us catch the issue early?

How did the tooling, alerting, or intuition contribute?

What would’ve happened if we hadn’t acted?

How do we make this kind of response repeatable and teachable?

You’re not chasing a root cause here—you’re mapping the early warning system

and the immune response. These moments are often quiet wins that disappear

into the noise unless someone captures them.

If you want real resilience, you can’t just study failures. You have to study the

things that almost failed but didn’t. They show you where your systems flexed

instead of snapped, and where your people trusted their gut and were right.

🔑 Key Takeaway:

Celebrate the anti-incidents. They’re often invisible, but they’re proof your

systems—and your people—are getting stronger.

13. From Lessons to Systems Change 🔄

A retrospective without action is just a history lesson. The real value comes

from turning insights into tangible improvements.

The Action Item Lifecycle

Action items must be treated with the same rigor as product features.

1. Creation: Clear, specific, measurable, assigned, time-bound (SMART).

2. Prioritization: Integrated into existing backlog processes (e.g., JIRA,

Asana). Prioritized alongside other development work. 📈

3. Tracking: Regularly reviewed and updated.

4. Completion: Verified and closed. ✅

5. Verification: Confirm the change had the intended effect.

Prioritizing Reliability Work

This is often the hardest part. Reliability work (from post-mortems) competes

with new feature development.

Error Budgets: Use SLOs and error budgets to justify reliability work.

Exceeding your error budget means reliability work takes precedence. 💰

Cost of Downtime: Quantify the business cost of incidents to justify

investment in prevention. 💸

“Shaving Yaks”: Watch out for action items that spiral into unrelated, large

projects. Keep them focused. ✂️

“Reliability Tax”: Dedicate a percentage of engineering time (e.g., 20%) to

reliability work.

The Feedback Loop: How Incidents Inform Product & Engineering

Architectural Reviews: Post-mortem findings should influence future

system designs. 🏗️

SRE/DevOps Integration: Embed learnings directly into development

practices, CI/CD pipelines, and testing. 🔁

Security Posture: Incidents often expose security gaps. Integrate those

learnings. 🔒

Runbook/Playbook Updates: Living documentation must be updated post-

incident. 📖

Championing Systemic Change

Leadership Buy-in: Executive support is crucial for prioritizing reliability.

👑

Cultural Reinforcement: Regularly highlight success stories of post-

mortem actions.

Shared Responsibility: Emphasize that reliability is everyone’s job, not just

the SRE team’s. 🤝

🔑 Key Takeaway: The true measure of an effective incident management

program is its ability to drive concrete, systemic change. Turn lessons

learned into prioritized, actionable work that continuously improves

reliability.

14. Measuring What Matters 📊

You can’t improve what you don’t measure. Metrics provide insights into the

health of your incident response process and system reliability.

Key Incident Metrics

Mean Time To Detect (MTTD): How long from issue start to detection?

(Lower is better) ⏱️

Mean Time To Acknowledge (MTTA): How long from alert to first human

acknowledgment? (Lower is better) ⏱️

Mean Time To Mitigate (MTTM): How long from detection to impact

reduction? (Lower is better) ⏱️

Mean Time To Resolve (MTTR): How long from detection to full service

restoration? (Lower is better) ⏱️

Mean Time To Identify (MTTI): How long does it take to figure out root

cause? (Lower is better) ⏱️

Number of Incidents: Total incidents over time (e.g., per week, month).

(Fewer is better, but watch for under-declaration) 📉

Incident Frequency by Severity: Breakdown of SEV-1s, SEV-2s, etc. 📊

On-Call Burden/Pager Fatigue: Number of alerts per on-call engineer,

number of pages outside working hours. (Lower is better) 😴

Post-Mortem Action Item Completion Rate: Percentage of action items

completed on time. (Higher is better) ✅

The Danger of Vanity Metrics

Focus on Outcomes, Not Just Outputs: Don’t just track how many post-

mortems, but what changes resulted.

Context is King: A spike in incidents might mean better detection, not

necessarily worse reliability.

Avoid Gaming Metrics: If MTTR becomes a target without cultural safety,

people might prematurely close incidents.

Building Incident Dashboards & Reports

Real-time Dashboards: For active incidents (e.g., current severity, active

roles, ongoing comms). ⚡

Historical Trends: Dashboards showing MTTR trends, incident counts over

time. 📈

Custom Reports: Tailored for different audiences (e.g., exec summary of

business impact, engineering drill-down on root causes).

Continuous Improvement Loop

Measuring is part of a continuous loop:

1. Define Metrics: What do you want to improve?

2. Collect Data: Implement logging and tooling.

3. Analyze & Visualize: Understand trends and outliers.

4. Identify Areas for Improvement: Where are the bottlenecks?

5. Implement Changes: Prioritize and execute action items.

6. Measure Again: Did the changes have the desired effect?

🔑 Key Takeaway: Strategic metrics provide the evidence needed to

understand your current state, justify investment in reliability, and

demonstrate the impact of your incident management program. Choose

metrics that drive actionable insights, not just numbers.

15. The Future State of Incident Command 🔮

Incident management is a constantly evolving discipline. What’s next?

AI/ML in Incident Response: Beyond Anomaly Detection

Intelligent Triage: AI assisting in correlating alerts, identifying blast

radius, and suggesting initial runbooks. 🧠

Predictive Incidents: Using historical data to predict potential failures

before they manifest. 🔮

Automated Root Cause Analysis (Limited Scope): AI sifting through

logs/traces to pinpoint anomalies faster. 🕵️‍♀️

Natural Language Processing (NLP) for Comms: AI drafting initial

communication updates based on incident data. ✍️

🤖 Reality Check: AI won’t replace human ICs soon. It will augment their

capabilities, offloading cognitive burden and speeding up information

processing. Human judgment, empathy, and creative problem-solving

remain essential.

Proactive Incident Management & Resilience Engineering

Shift Left Reliability: Embedding reliability practices earlier in the

development lifecycle. ⬅️

Human Factors Integration: Deeper understanding of how humans interact

with complex systems, and designing for human error.

Operational Readiness Reviews: Formal reviews of new features/systems

for incident preparedness before launch. 🚀

Learning from Successes: Studying how teams avoid incidents or recover

gracefully from near-misses. ✨

Distributed & Federating Incident Command

As systems become more distributed, so too will incident response.

Federated IC: Multiple ICs for different parts of a complex system, with an

overarching “Commander of Commanders” if needed. 🧑‍✈️🧑‍✈️

Standardized Interoperability: Tools and protocols for seamless handover

and information sharing between independent teams/companies. 🤝

Human-Centered Design for On-Call & Tooling

Reducing Alert Fatigue: Continued focus on high-fidelity alerts. 🔕

Intuitive Tooling: Incident management platforms designed for ease of use

under pressure. 💻

Wellness-First On-Call: Schedules, tooling, and culture that actively

prevent burnout. 🧘

🔑 Key Takeaway: The future of incident command is about continuous

human-computer collaboration, deeply integrated reliability into every

stage of the software lifecycle, and a relentless focus on the well-being and

adaptive capacity of the people on the front lines.

Conclusion

The journey of mastering incident command is continuous. It’s a blend of

technical expertise, human psychology, and organizational culture. You’ve

learned about:

The true nature of an incident and how modern SRE principles redefine

response.

The critical role of culture—blamelessness, psychological safety, and

resilience.

The importance of clarity—clear criteria, defined roles, and structured

communication.

The power of preparation—robust systems, living playbooks, and

continuous training through chaos engineering.

The art of the active response—leadership under pressure, managing

information, and leading people.

The necessity of learning—blameless post-mortems and turning lessons

into systemic change.

The discipline of measurement—using data to drive improvement.

The evolving future—leveraging AI while remaining human-centered.

The next time an alert fires, you’ll be better equipped. Not just with tools, but

with a mindset, a framework, and the confidence to lead. The art of incident

command is about transforming chaos into learning, and ultimately, building

more resilient systems and teams.

The Journey Continues: Further Learning and Resources 🚀

Learning From Incidents: A vibrant community and resource for post-

mortem insights and incident management best practices.

SRE Books: Google SRE Book, SRE Workbook.

Resilience Engineering Association: Explore the academic and practical

aspects of resilience engineering.

Industry Conferences: SREcon, PagerDuty Summit, Chaos Conf.

Online Courses & Workshops: Many platforms offer incident management

training.

Keep learning. Keep practicing. Keep building resilient systems and, more

importantly, resilient people. Your users—and your on-call teams—will thank

you. 🙏

One Last Thing 💬

If this book helped you—if it made you think, saved you time, or gave you

language for what you’ve lived—consider helping someone else.

That might mean sending feedback. Sharing it with a teammate. Or supporting

the project so it stays free for the next person who needs it.

This is value-for-value. No gatekeepers. Just trust.

Thanks for reading. Stay resilient. 🙏

